If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+72t-64=0
a = 10; b = 72; c = -64;
Δ = b2-4ac
Δ = 722-4·10·(-64)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-88}{2*10}=\frac{-160}{20} =-8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+88}{2*10}=\frac{16}{20} =4/5 $
| 10t^+72t-64=0 | | 4.5+10m=8.69 | | 24+2x=32+x-2+x-2 | | 8/5(16d+24)=6(d-1)+1 | | 5x-9+7x-10=4x-29 | | b-b/4=12 | | 4x-29+7x-10=5x-9 | | 2(-4-8x)+6=-1 | | (14x-38)+(13x+29)=180 | | -76-14=-4(a-7)=4a | | 3+5=-4(7x-2) | | 3+5=-4(7x-2 | | 3x(x+3)=22 | | n-6(n+1)=-7n+6 | | 2)-6y+17=3y-10 | | (8x+4)°=x | | r+{-8)=10 | | -8(x+7)+4=-52 | | 25/n=2/3 | | -1+2m=-3 | | 6/7=n/6.5 | | 4(y+8)-7=15+2y | | 2(4x+7)=-13+11 | | 12=5+1/3x | | -5+-2s=5 | | 5x-9+4x-9=7x-10 | | 1/2r+8=15 | | 4x+16=8x+20 | | 5q+4q–3q=- | | 1/5x+11=71 | | 0.4x+3.4=5 | | -88=-3(4m+5)-1-3m |